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SUMMARY

The time-dependent hydrodynamic removal of a contaminated �uid from a rectangular cavity on the
�oor of a duct is analysed numerically. Laminar duct �ows are considered for Reynolds numbers of 50
and 1600 where the characteristic length is the duct height. Two cases are considered where: (1) the �uid
density in the cavity is the same as that for the duct �uid and (2) the cavity �uid has a higher density
than the duct �uid but the two �uids are miscible. The �ow is solved by a numerical solution of the time-
dependent Navier–Stokes equations. Attention is focused on the convective transport of contaminated
�uid out from the cavity and the e�ect of duct �ow velocity pro�le on the cleaning process. Passive
markers are used in the numerical simulation for the purpose of identifying the contaminated cavity
�uid. The results show that the �ow patterns in the cavity are in�uenced by the type of duct �ow.
From a cleaning perspective, the results suggest that it is easier for the duct �ow to penetrate a cavity
and to remove contaminated cavity �uid when the duct �ow is of the Poiseuille type and the aspect
ratio is large. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the processing industry, the residues of industrial manufacturing processes can give rise to
an accumulation of deposits in cavities of rough surfaces and consequently a corresponding
degradation of quality in the processed material may be observed. The cavities may be formed
by poorly �tted components and junctions in pipe work or ducts. For example, in the chemical
and food processing industry, surfaces in ducts or pipelines are often fouled by the product
or contaminant substance. This may cause a reduction in the performance of heat exchanger
elements, increase in pressure losses and also result in adverse hygiene conditions arising.
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The quality of the processed material is maintained by periodically cleaning the ducts and
pipelines. The most common means of cleaning is to �ush the system with an appropriate
�uid which may be a solvent. Little published work is available to quantify the e�ciency of
the hydrodynamic removal of contaminated deposits suspended in �uid trapped in cavities.
It is desirable to know under what conditions the cleaning of the cavity can be made more
e�cient.
Since �ow separation occurs whenever there is an abrupt change of geometrical con�gura-

tion of the body surface, and a good example of this is when a duct �ow passes a cavity,
numerous studies of �ow over cavities have been motivated by a fundamental interest in
the phenomenon of separated �ow. Sometimes the separation streamline, which originates at
the upstream corner, is reattached to the solid surface downstream and also encloses a re-
circulation region. Many authors have reported their studies on this problem including Take-
matsu [1], Mehta and Lavan [2], O’Brien [3], Shen and Floryan [4], Higdon [5], Taneda [6]
and Pozrikidis [7]. One key result from these studies is that the separation streamline and the
intensity of the closed �ow within the cavity are a function of cavity aspect ratio, relative
duct size to cavity size, and the velocity pro�le within the duct. The important re-circulation
regions play a major role in the problem of cavity cleaning. From a cleaning perspective,
there is a reasonable presumption that foulant trapped in the re-circulating vortices will be
di�cult to remove.
Additional work regarding the mass transfer in a cavity has been presented in litera-

ture since the 1980s. Kang and Chang [8], Kim et al. [9] and Chang et al. [10] showed
that the enhancement of mass transfer by vortices induced in a cavity due to external duct
�ow increases as cavity aspect ratio increases. Alkire and Reiser [11] and Alkire and Deli-
gianni [12] investigated the e�ect of �uid �ow on the removal of dissolution products from
cavities of invariant shapes and of di�erent aspect ratios. They showed that the small sizes
of the cavities were not in�uenced by the type of external �ow. As the cavity size increases,
transport by convection will eventually predominate over di�usion processes. Yeckel et al.
[13] and Mickaily et al. [14] developed a hydrodynamic model to study numerically the ef-
fect of periodic roughness on the duct �ows. They demonstrated that the reduction in �ow
can be quanti�ed as a function of well-de�ned surface roughness parameters for periodic
surfaces.
Most previous studies have assumed that the velocity components in the cavity are those

which exist in steady-state conditions. Recently Fang et al. [15] presented a numerical and
experimental study of the transient removal of a contaminated �uid from a cavity on the �oor
of a duct. The results suggest that the cleaning of the foulant in a cavity with �uid of the
same density as the �uid in the duct is more pronounced during the unsteady start-up of the
duct �ow, and the rate of cleaning decreases as the �ow reaches a steady state. The cleaning
process is enhanced as the cavity aspect ratio is increased and as the duct Reynolds number
increases.
Chilukuri and Middleman [16] considered hydrodynamic cleaning of a surface by the use

of a brush, a mop or a rotating drum. In these situations the layer of �uid between the solid
surface and applicator is quite small and the �ow between the applicator and the surface can
be considered as Couette �ow. Because of the small gap, the �ow will also be laminar in
nature. Some previous studies have focused on Couette �ow over a cavity in which the upper
wall of the duct is moved with a constant velocity. Examples are the studies by Mehta and
Lavan [2], O’Brien [3] and Mickaily et al. [14]. They showed that there is a slightly di�erent
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dividing streamline and cavity �ow pattern between Poiseuille �ow and Couette �ow. Hence,
it is of interest to know how the foulant is removed in Couette �ow and how it might di�er
from Poiseuille �ow.
In the present study the �ow is always considered to be laminar. Two cases are considered

where the density of the cavity �uid is concerned. First, the cavity �uid density, in which
the contaminant particles are suspended, is taken to be the same as the density of the �uid in
the duct. The second case considers two miscible �uids, the density of the �uid in the cavity
being higher than the density of the �uid �owing through the duct. Therefore, the study of
hydrodynamic removal involves unsteady separated �ow and mass transfer via convection and
di�usion.
The numerical method used to solve governing �uid �ow equations is based on the marker

and cell (MAC) method of Harlow and Welch [17]. Passive markers are used to visual-
ize the �ow and to quantify the hydrodynamic cleaning of the cavities. Similar �nite dif-
ference formulations of the equations of motion for other problems have been used previ-
ously by, among others, Miyata and Nishimura [18], Liu et al. [19], and Nicolaou et al.
[20; 21]. These studies which cover a variety of �uid �ow problems show that the formula-
tion works well for modelling incompressible laminar �ows. The computer code which has
been written for the present investigation has been validated by calculating and comparing lid-
driven cavity �ows with results of previous studies; the validation results are given by Fang
et al. [15].

2. PHYSICAL MODEL AND NUMERICAL METHOD

The geometry of the duct-cavity con�guration employed in this study is shown in Figure 1. A
Cartesian co-ordinate system is used with origin at the lower left-hand corner of the compu-
tational domain. The cavity dimensions are de�ned by width W and depth D. A cavity aspect
ratio, AR, is de�ned by the ratio W=D. Fluid of density � and viscosity � �ows continuously
into the duct from the left and exits on the right. The acceleration due to gravity, g, acts
in the negative z direction. All solid boundaries are assumed to be rigid no-slip walls. The
height of the duct H was kept constant. Preliminary numerical experiments have indicated
that entry lengths of twice the duct height (2H) or greater cause negligible changes in the
results and therefore it has been considered su�cient to use entry lengths of 2H for all the
cases considered.
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Figure 1. The geometry of the duct and cavity, and the co-ordinate system.
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The maximum inlet velocity U and duct height H are used to de�ne non-dimensional
velocities (u; w), spatial co-ordinates (x; z), time (t) and pressure (p) which are given by

u= �u=U; w= �w=U; x= �x=H; z= �z=H; t=U �t=H and p= �p= ��U 2

where a bar represents the corresponding dimensional quantity and �� is �uid density. The
fundamental non-dimensional equations in Cartesian form for two-dimensional incompressible
�ow of a Newtonian �uid with constant properties are:
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where Re=UH=� is the Reynolds number, Fr=U=(gH)1=2 is Froude number, and Di=D=UH
is a constant in which D is the coe�cient of di�usivity. The hydrostatic pressure and density
distributions have been subtracted from the equations so p and (�− �s) represent the pertur-
bation pressure and density values, respectively, where �s is the static distribution of density
at t=0.
The �ow �eld is divided into cells of size �x× �z with cell centres being designated by

indices i in the x direction and k in the z direction. The horizontal velocity component, u, is
located on the vertical sides of the cell, and the vertical velocity component, w, is located on
the horizontal upper and lower sides of each cell. The pressure p and density � are located
at the cell centres. The Navier–Stokes equations are represented in a �nite-di�erence form by
forward di�erencing in time and centred di�erencing in space, except for the convection terms
where a combination of centred and upstream di�erencing is used. For example, if integer ‘n’
represents the time level, then u at a new (n+ 1) time level is calculated from

(�u)n+1i+1=2; k = �i+1=2; k − �t
�x
(pn+1

i+1; k − pn+1
i; k ) (5)

where
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The convection terms in (5) are given by

UXXi+1=2; k =
1
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where � is a combination factor. �=0 gives centred di�erencing and �=1 gives upstream
di�erencing. Approximate stability conditions for the iteration procedure are given by Miyata
and Nishimura [18]:
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Equation (6) gives conditions for the combination factor and the Courant number, and it
limits the distance a �uid particle can travel in one time step to the smallest side of a cell.
Equation (7) represents an upper limit on viscosity and it is important when highly viscous
�ows are being considered.
The combined upstream-centred di�erencing scheme introduces a variable amount of arti�-

cial di�usion useful in overcoming the destabilizing negative di�usion present in pure centred
di�erencing schemes. Several tests using a collapsing uniform density region in a strati�ed �ow
have shown that a value of 0.5 provides su�cient positive numerical di�usion to overcome
the instabilities arising from numerically introduced negative di�usion without signi�cantly
a�ecting the physics of the �ow.
The solution procedure is based on the arti�cial compressibility method of Chorin [22] and

involves a simultaneous iteration on pressure and velocity component. If Dn+1
i; k represents the

divergence of the �uid in a cell, where
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where m is an iteration count and Rf is a relaxation parameter. The four velocities in
Equation (8) involve �ve pressure terms: pn+1
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while sweeping in the direction of increasing i and k This minimizes the number of itera-
tions required for convergence. The stability restriction is given by Rf6��x2=2�t [23]. The
optimum value of Rf giving the most rapid convergence can, in general, only be determined
by experimentation. Usually it is around Rf = 1:8. The solution is reached when the magni-
tude of Dn+1

i; k in each cell is less than some pre-set small value, typically O(10−6). When the
velocity–pressure iteration has converged, the density is updated using

�n+1
i; k = �i; k −

�t
2�x

(�n+1
i+1; ku

n+1
i+1=2; k − �n+1

i−1; ku
n+1
i−1=2; k)−

�t
2�z

(�n+1
i; k+1u

n+1
i; k+1=2 − �n+1

i; k−1u
n+1
i; k−1=2)

−�t
2
�n+1
i; k Dn+1

i; k +Di

(
�n+1
i+1; k − 2�n+1

i; k + �n+1
i−1; k

�x2
+

�n+1
i; k+1 − 2�n+1

i; k + �n+1
i; k−1

�z2

)
(9)

The entire solution is considered to reach the convergence when the change in density is not
greater than a small value �� given by

|(�n+1
i; k )

r+1 − (�n+1
i; k )

r|max¡��

The superscript r is a density calculation iteration count which is increased by one each
time the density is updated. If the density change in all cells is greater than ��, then the
velocity–pressure �elds are updated and the procedure is repeated.
The density equation (9) is used only when there is a density di�erence between the �uid

in the cavity and the �uid in the duct; otherwise the density is kept constant. The density
equation provides the mechanism by which mass transfer occurs between the higher density
cavity �uid and the �uid in the duct. The di�usion term is usually negligible for smoothly
varying densities, but may be signi�cant when a sharp density interface exists. For example,
during the initial stages of a duct �ow over a cavity containing a heavier, miscible �uid.
The e�ects of di�usion may also dominate over very long periods of time after convection
becomes negligible. The density equation plays no direct role in the transport of the suspended
contaminants in the �uid represented by the passive marker particles, but only through the
�ow induced due to di�usion. That is, Equation (9) is not a species equation. For the type of
problem considered in the present study where the di�erence in density is assumed to be due
to a saline solution in the cavity, the constant of di�usivity, D, has the approximate value of
1:3× 10−9 m2=s. This corresponds to sea water at a temperature of 20◦C.
The computational mesh is surrounded by a one-cell-thick layer of cells, which are used for

setting boundary conditions. No-slip boundary conditions are applied at all solid boundaries,
a �ow velocity is prescribed at the in�ow boundary and zero normal gradients are used to
set variables just outside the out�ow boundary.
Flow visualization and �uid contamination calculations are made possible by the use of

passive markers. These are initially distributed before start-up and are moved to new positions
at each time step. For example the new x-position at time level n+ 1 of a marker identi�ed
by the index k is calculated from xn+1

k = xnk + un+1
k �t where uk is the horizontal velocity

at the marker position, xnk . The velocity components at the marker positions are calculated
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by a weighted interpolation of velocities from the surrounding cells as described by Welch
et al. [24].
The computational mesh resolution was chosen by successively reducing the cell size until

the e�ect on the results relating to cavity cleaning was negligible. Smaller cell sizes did
improve the resolution of the smaller coherent structures in the �ow such as the small corner
vortices. The cell size used for all the numerical calculations was 0:02× 0:02. Based on this
cell size and the �ow speed in the duct, a time step was used that satis�ed Equation (6)
for �=0:5. The time step used never exceeded �t=0:01 for the range of Reynolds numbers
considered.

3. RESULTS AND DISCUSSION

3.1. Case 1: Cavity �uid density equals duct �uid density

Figure 2 shows the streamlines for Poiseuille duct �ow over cavities of di�erent aspect ratios
(width=depth) in the range AR=0:25–4.0. The Reynolds number of the duct �ow is Re=50
and the �gures show the �ow when the steady state has been reached. Figures 2(a)–2(c) show
cavities with AR equal to or greater than 1.0 formed by keeping the cavity depth constant, and
equal to the duct height, while the cavity width is varied. For Figure 2(d) the cavity depth is

Figure 2. Steady-state streamlines of Poiseuille �ow over cavities for Fr=0:0086,
Di=0, Re=50. Legend gives non-dimensional stream function values. (a) AR=1:0;

(b) AR=2:0; (c) AR=4:0 and (d) AR=0:25.
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Figure 3. Steady-state normalized velocity pro�les at cavity mid-width location for various cavity aspect
ratios. Duct �ow type: Poiseuille. Fr=0:0086, Di=0, Re=50.

four times the cavity width and the duct height is equal to the cavity width. After steady-state
conditions have been reached the square cavity, AR=1, contains a single dominant large
vortex which occupies most of the cavity. For AR=2:0, the outer �ow penetrates into the
cavity at the downstream end of the cavity, but the penetration does not reach the bottom
of the cavity. The widest cavity considered, corresponding to an aspect ratio AR=4:0, has
the duct �ow penetrating to the bottom of the cavity leaving one large main vortex and a
small isolated vortex in the corner. For a deep cavity, with AR=0:25, three main vortices are
formed in the cavity. The velocity pro�les at the mid-width location in the cavity for a range
of AR values when Re=50 are shown in Figure 3. Clearly, the higher velocities occur for
AR=4:0, a consequence of the more pronounced penetration of the duct �ow into the cavity.
Couette duct �ow over a cavity, shown in Figure 4, does not signi�cantly alter the �ow

patterns for the AR=1 and 0.25 cavities. However, signi�cant di�erences between Couette
�ow and Poiseuille �ow are shown in the wider cavities with AR=2:0 and 4.0. Couette
duct �ow does not penetrate deep into the cavity, even for these larger cavity aspect ratios;
furthermore, the dividing streamline can bulge out into the duct as the cavity aspect ratio
increases. Figure 5 shows the velocity pro�les in a cavity corresponding to Couette duct �ow.
Di�erent AR are considered for a �xed Reynolds number of 50. In contrast to Poiseuille duct
�ow, the cavity �ows are predominantly circulatory, even for the larger aspect ratios. The
magnitudes of the velocities in the cavity are substantially lower than those for Poiseuille
�ow.
A measure of the cleaning e�ectiveness of cavities of di�erent aspect ratios can be de-

termined using an area fraction approach. This involves calculating the area fraction of
re-circulating �uid in the cavity. Figure 6 shows the fraction of the cavity area contain-
ing contaminated �uid when the �ow reaches its steady state. The parameter A =Ac is roughly
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Figure 4. Steady-state streamlines of Couette �ow over cavities for Fr=0:0086,
Di=0, Re=50. Legend gives non-dimensional stream function values. (a) AR=1:0;

(b) AR=2:0; (c) AR=4:0 and (d) AR=0:25.

Figure 5. Steady-state normalized velocity pro�les at cavity mid-width location for various cavity aspect
ratios. Duct �ow type: Couette. Fr=0:0086, Di=0, Re=50.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1087–1103



1096 L.-C. FANG, D. NICOLAOU, AND J. W. CLEAVER

Figure 6. Area fraction of �uid trapped in cavities against cavity
aspect ratio. Fr=0:0086, Di=0, Re=50.

Figure 7. Flow development in a cavity of AR=4 corresponding to Poiseuille �ow in the duct.
Fr=0:0086, Di=0, Re=50. (a) t=6; (b) t=32 and (c) t=64.
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Figure 8. Time-dependent �ow development in a cavity of AR=4 corresponding to Couette duct �ow.
Fr=0:0086, Di=0, Re=50. (a) t=6; (b) t=32 and (c) t=64.

a measure of the fraction of �uid re-circulation in the cavity, where A represents the area
of the re-circulating �ow (see inset in Figure 6) and Ac presents the total area of the cav-
ity. The extent of penetration of duct �ow into the cavity is related to the value of A =Ac.
When A =Ac is less than unity, the duct �ow penetrates the cavity. When A =Ac is equal to or
exceeds unity, then the re-circulating �ow will occupy the whole cavity and can, under certain
conditions, also bulge into the duct �ow. For Poiseuille �ow, the value of A =Ac increases
with decreasing cavity aspect ratio. That is, for deep cavities more �uid is con�ned in the
cavity space.
In the context of cavity cleaning via hydrodynamic removal, the onset of regions of re-

circulating �ow inside a cavity prevents the fresh duct water from reaching the deepest regions
of the cavity and thus contaminant removal is hindered. The observations for Poiseuille �ow
is that the cavity area covered by re-circulating �ow decreases with increasing cavity aspect
ratio and therefore the duct �ow penetrating into the cavity is made easier. For Couette �ow,
the value of A =Ac can be larger than unity and is little a�ected by cavity aspect ratio. The
penetration of the duct �ow into the cavity is severely restricted and the contaminant is
e�ectively trapped in the cavity.
Although the hydrodynamic model developed by Yeckel et al. [13] and Mickaily et al. [14]

is able to predict how much �uid is eventually trapped in a cavity, the streamline patterns
within a cavity do not indicate to what extent the original cavity �uid is displaced by fresh
�uid from the duct. To assess how �uid is purged from the cavity a 1600 markers are evenly
distributed in the cavity prior to initiating the �ow. Figure 7 shows how the markers in the
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Figure 9. Single marker path for Couette and Poiseuille �ows. The �lled symbol indicates the starting
point. AR=4, Fr=0:0086, Di=0 and Re=50.

Figure 10. Original layout of markers trapped in the cavity for AR=4, Fr=0:0086, Di=0 and Re=50.
(a) Poiseuille �ow and (b) Couette �ow.

cavity are displaced with time for Poiseuille duct �ow. A vortex is gradually formed after
t=32 and, with time, the markers remaining in the cavity are con�ned in the corners of the
cavity. Figure 8, corresponding to Couette duct �ow, shows that some of the markers are
removed from the cavity at an early stage with most markers remaining in the cavity being
caught in the re-circulating regions that develop shortly after the start-up of the duct �ow.
The distribution of markers remaining in the cavity is depends on the type of duct �ow. This
is illustrated by Figure 9 which shows the path a particle follows for each type of duct �ow.
The paths are di�erent and hence the distribution of contaminant is expected to be di�erent.
Figure 10 shows the original positions of those markers which remain trapped in the cavity
after a long time when the rate of marker removal has reduced to zero. It can be seen that
for the AR=4.0 cavity most markers are removed from the upper downstream end of the
cavity, with Couette duct �ow leaving the most contaminant in the cavity. Figure 11 shows
the percentage of markers removed for cavities of di�erent AR. More markers are removed
from a cavity as the cavity aspect ratio increases for both Poiseuille �ow and Couette �ow,
but Poiseuille duct �ow is more e�ective for cleaning cavities, almost by a factor of 2.7 over
Couette duct �ow.
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Figure 11. Percentage of markers removed from the cavity for Poiseuille �ow and for Couette �ow.
AR=4, Fr=0:0086, Di=0 and Re=50.

Figure 12. Iso-density contours corresponding to Poiseuille �ow over a cavity. AR=4, Fr=0:2781,
Di=8:1× 10−7, Re=1600 and �c = 1:10. (a) t=6; (b) t=48 and (c) t=256.
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Figure 13. Iso-density contours corresponding to Couette �ow over a cavity. AR=4, Fr=0:2781,
Di=8:1× 10−7, Re=1600 and �c = 1:10. (a) t=6; (b) t=48 and (c) t=256.

3.2. Case 2: Cavity �uid density greater than duct �uid density

The problem considered is duct �ow over a cavity containing a salt solution of uniform
density, while fresh water �ows in the duct. Density contours for Poiseuille �ow over a
cavity with an aspect ratio AR=4:0, cavity �uid density �c = 1:10 and duct �ow Reynolds
number Re=1600 are shown in Figure 12. For the two-�uid case, like the single �uid case,
the duct �uid penetrates into the cavity during the early stages of the �ow start-up, thereby
removing an amount of cavity �uid. Soon after this initial phase an intermediate layer forms
between the duct �uid and the cavity �uid due to di�usion and mixing that takes place. This
layer is strati�ed, having a smoothly varying density distribution, and becomes thicker with
time. Strati�cation inhibits the penetration of the duct �ow and therefore reduces the overall
removal of markers from the cavity. Since the gravity forces present in a strati�ed �uid inhibit
circulation, it follows that convection-enhanced di�usion is also substantially reduced. Like
Poiseuille duct �ow, Couette �ow (see Figure 13) removes most of the cavity �uid during the
early stages of �ow development and by t=256 it is clear that the removal rate has decreased
substantially, but is still greater than for Poiseuille �ow at the same time t. This is due to the
greater amount of �uid removed by Poiseuille duct �ow during the initial phase making it
more di�cult to overcome the gravitational forces required to raise the higher density cavity
�uid over the step formed by the cavity downstream wall.
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Figure 14. Cavity mid-width normalized velocity pro�les at time t=256 for di�erent aspect ratios. Duct
�ow type: Poiseuille �ow. Fr=0:2781, Di=8:1× 10−7, Re=1600 and �c = 1:10.

Figure 15. E�ect of duct �ow type on average normalized density pro�les at t=256. AR=4,
Fr=0:2781, Di=8:1× 10−7, Re=1600 and �c = 1:10.
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Figure 16. Comparison between Poiseuille �ow and Couette �ow of the average density in a cavity at
t=256. AR=4, Fr=0:2781, Di=8:1× 10−7, Re=1600 and �c = 1:10.

The velocity pro�le at the cavity mid-width location shown in Figure 14 indicates the low
level of activity in the cavity for this two-density case. For Couette duct �ow the strati�ed
layer is not as thick as that created by Poiseuille duct �ow. This is shown in Figure 15 where
a comparison is made of average normalized density (�ave) pro�les for a cavity of aspect ratio
AR=4 and at time t=256.
An alternative method of quantifying the cleanliness of the cavity �uid is to consider an

overall average density for a cavity. The cleanliness of the cavity can be measured by how
close the average cavity �uid density is to the duct �uid density. The average cavity �uid
density (�cave) for Poiseuille and Couette duct �ow for a range of AR values is shown in
Figure 16, clearly indicating that the higher AR cavities are easier to clean, regardless of the
type of �ow in the duct, but Poiseuille �ow again is more e�ective at cleaning cavities.

4. CONCLUSIONS

A numerical study of the hydrodynamic cleaning of cavities on the �oor of a duct has been
carried out for two types of duct �ow, Poiseuille �ow and Couette �ow. For each type of duct
�ow, the cavity cleaning process has been investigated for cavities containing a �uid with
density equal to that of the duct �uid, and for cavities with a miscible �uid of higher density.
For the uniform density case and for the two-density case it has been demonstrated that the
cleaning process becomes more e�ective as cavity aspect ratio increases; with Poiseuille duct
�ow being overall more e�ective than Couette duct �ow. The two-density case is much more
di�cult to clean because the cavity �uid quickly becomes a di�use strati�ed layer which
inhibits duct �uid penetration as well as convection-enhanced di�usion. The rate of cleaning
is high during the initial stages of the �ow start-up and rapidly decreases thereafter.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1087–1103



SIMULATION OF HYDRODYNAMIC CLEANING OF CAVITIES 1103

REFERENCES

1. Takematsu M. Slow viscous �ow past a cavity. Journal of the Physical Society of Japan 1966; 21:1816–1821.
2. Mehta U, Lavan Z. Flow in a two-dimensional channel with a rectangular cavity. Transactions of the ASME,
Journal of Applied Mechanics 1969; 36:897–901.

3. O’Brien V. Closed streamlines associated with channel �ow over a cavity. Physics of Fluids 1972; 15:
2089–2097.

4. Shen C, Floryan JM. Low Reynolds number �ow over cavities. Physics of Fluids 1985; 28:3191–3202.
5. Higdon JL. Stokes �ow in a arbitrary two-dimensional domains: shear �ow over ridges and cavities. Journal
of Fluid Mechanics 1985; 159:195–226.

6. Taneda S. Visualization of separating Stokes �ows. Journal of the Physical Society of Japan 1979; 46:
1935–1942.

7. Pozrikidis C. Shear �ow over a plane wall with an axisymmetric cavity or a circular ori�ce of �nite thickness.
Physics of Fluids 1994; 6:68–79.

8. Kang IS, Chang HN. The e�ect of turbulence promoters on mass transfer-numerical analysis and �ow
visualization. International Journal of Heat and Mass Transfer 1982; 25:1167–1181.

9. Kim J, Moin P. Application of a fractional-step method to incompressible Navier–Stokes equation. Journal of
Computational Physics 1985; 59:308–323.

10. Chang HN, Ryn HW, Park DH, Park YS. E�ect of external laminar channel �ow on mass transfer in a cavity.
International Journal of Heat and Mass Transfer 1987; 30:2137–2149.

11. Alkire JK, Reiser DB. E�ect of �uid �ow on removal of dissolution products from small cavities. Journal of
the Electrochemical Society 1984; 131:2795–2800.

12. Alkire JK, Deligianni H. The role of mass transport on anisotropic electrochemical pattern etching. Journal of
the Electrochemical Society 1988; 135:1093–1100.

13. Yeckel A, Middleman S, Klumb LA. The removal of thin �lm from periodically grooved surfaces by an
impinging jet. Chemical Engineering Communications 1990; 96:69–79.

14. Mickaily ES, Middleman S, Allen M. Viscous �ow over periodic surfaces. Chemical Engineering
Communications 1992; 117:401–414.

15. Fang LC, Cleaver JW, Nicolaou D. Transient removal of a contaminated �uid from a cavity. International
Journal of Heat and Fluid Flow 1999; 20:605–613.

16. Chilukrishna R, Middleman S. Circulation, di�usion, and reaction within a liquid trapped in a cavity. Chemical
Engineering Communications 1983; 22:127–138.

17. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible �uid with free surface.
Physics of Fluids 1965; 8:2182–2189.

18. Miyata H, Nishimura S. Finite-di�erence simulation of nonlinear ship waves. Journal of Fluid Mechanics 1985;
157:327–357.

19. Liu R, Nicolaou D, Stevenson TN. Waves from an oscillatory disturbance in a strati�ed shear �ow. Journal
of Fluid Mechanics 1990; 219:609–619.

20. Nicolaou D, Garman JFR, Stevenson TN. Internal waves from a body accelerating in a thermocline. Applied
Scienti�c Research 1995; 55:171–186.

21. Nicolaou D, Liu R, Stevenson TN. The evolution of sheared and nonsheared thermocline waves from an
oscillatory disturbance. Journal of Fluid Mechanics 1993; 254:401–416.

22. Chorin AJ. Numerical solution of the Navier–Stokes equations. Mathematics of Computation 1968; 22:
745–762.

23. Viecelli JA. A computing method for incompressible �ows bounded by moving walls. Journal of Computational
Physics 1971; 8:119–143.

24. Welch JE, Harlow FH, Shannon JP, Daly BJ. The MAC method—a computing technique for solving viscous,
incompressible, transient �uid-�ow problems involving a free surface. Los Alamos Scienti�c Laboratory Report
LA-3425, Los Alamos, 1966.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1087–1103


